105 research outputs found

    Test Targets 8.0: A Collaborative effort exploring the use of scientific methods for color imaging and process control

    Get PDF
    Publishing is both a journey and a destination. In the case of Test Targets, the act of creating and editing content, paginating and managing digital assets, represents the journey. The hard copy is the result or destination that readers can see and touch. Like the space exploration program, everyone saw the spacecraft that landed on the moon. It was the rocket booster that made the journey from the earth to the moon possible. This article portrays the process of capturing ideas in the form of digital data. It also describes the process of managing digital assets that produces the Test Targets publication

    Bedrock geology of south-central Iowa, Digital geologic map of Iowa, Phase 4: South-Central Iowa

    Get PDF
    https://ir.uiowa.edu/igs_ofm/1024/thumbnail.jp

    Association between frequency of telephonic contact and clinical testing for a large, geographically diverse diabetes disease management population

    Get PDF
    Diabetes disease management (DM) programs strive to promote healthy behaviors, including obtaining hemoglobin A1c (A1c) and low-density lipoprotein (LDL) tests as part of standards of care. The purpose of this study was to examine the relationship between frequency of telephonic contact and A1c and LDL testing rates. A total of 245,668 members continuously enrolled in diabetes DM programs were evaluated for performance of an A1c or LDL test during their first 12 months in the programs. The association between the number of calls a member received and clinical testing rates was examined. Members who received four calls demonstrated a 24.1% and 21.5% relative increase in A1c and LDL testing rates, respectively, compared to members who received DM mailings alone. Response to the telephonic intervention as part of the diabetes DM programs was influenced by member characteristics including gender, age, and disease burden. For example, females who received four calls achieved a 27.7% and 23.6% increase in A1c and LDL testing, respectively, compared to females who received mailings alone; by comparison, males who were called achieved 21.2% and 19.9% relative increase in A1c and LDL testing, respectively, compared to those who received mailings alone. This study demonstrates a positive association between frequency of telephonic contact and increased performance of an A1c or LDL test in a large, diverse diabetes population participating in DM programs. The impact of member characteristics on the responsiveness to these programs provides DM program designers with knowledge for developing strategies to promote healthy behaviors and improve diabetes outcomes

    Getting to the point: An experimental approach to improving the identification of penetrating projectile trauma to bone caused by medieval arrows.

    Get PDF
    The bow and arrow were an important part of medieval warfare, and the study of projectile injuries in skeletal assemblages has the potential to give valuable insight into the nature of conflict in this period. Projectile injuries are often overlooked in favour of sharp force trauma, and as of yet there have been no experiments looking at skeletal trauma caused by different types of medieval arrows, although several studies have examined prehistoric impact marks. The current study addresses this deficiency by examining the lesions left by three kinds of medieval arrowheads: leaf-shaped broadheads, armour-piercing bodkins, and barbed hunting broadheads, when fired from a longbow into cattle scapulae. The results show that the vast majority of impacts are puncture lesions with shapes that roughly conform to the cross-section of the heads used, and many of the defects perforate the bone entirely and have internal bevelling. Based mostly on wound shape, it is relatively straightforward to distinguish between bodkin and broadhead punctures, while the different types of broadheads leave more similar, yet distinctive, marks. Further experiments are required in order to assess the extent to which it is possible to distinguish between projectile trauma and penetrating trauma made by other types of medieval weapons

    Optimization of MicroCT Imaging and Blood Vessel Diameter Quantitation of Preclinical Specimen Vasculature with Radiopaque Polymer Injection Medium

    Get PDF
    Vascular networks within a living organism are complex, multi-dimensional, and challenging to image capture. Radio-angiographic studies in live animals require a high level of infrastructure and technical investment in order to administer costly perfusion mediums whose signals metabolize and degrade relatively rapidly, diminishing within a few hours or days. Additionally, live animal specimens must not be subject to long duration scans, which can cause high levels of radiation exposure to the specimen, limiting the quality of images that can be captured. Lastly, despite technological advances in live-animal specimen imaging, it is quite difficult to minimize or prevent movement of a live animal, which can cause motion artifacts in the final data output. It is demonstrated here that through the use of postmortem perfusion protocols of radiopaque silicone polymer mediums and ex-vivo organ harvest, it is possible to acquire a high level of vascular signal in preclinical specimens through the use of micro-computed tomographic (microCT) imaging. Additionally, utilizing high-order rendering algorithms, it is possible to further derive vessel morphometrics for qualitative and quantitative analysis

    Crop Updates 2005 - Lupins and Pulses

    Get PDF
    This session covers sixty five papers from different authors: 1. 2004 LUPIN AND PULSE INDUSTRY HIGHLIGHTS, Peter White Department of Agriculture 2. BACKGROUND, Peter White Department of Agriculture 2004 REGIONAL ROUNDUP 3. Northern Agricultural Region, Martin Harries, Department of Agriculture 4. Central Agricultural Region, Ian Pritchard, Department of Agriculture 5. Great Southern and Lakes, Rodger Beermier, Department of Agriculture 6. Esperance Port Zone, Mark Seymour, Department of Agriculture, and David Syme, The Grain Pool of WA LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 7. Lupin, Martin Harries, Department of Agriculture 8. Narrow-leafed lupin breeding, Bevan Buirchell, Department of Agriculture 9. Yellow lupin breeding in Western Australia, Kedar Adhikari, Mark Sweetingham and Bevan Buirchell, Department of Agriculture 10. WALAB2000 - First Anthracnose resistant albus lupins, Kedar Adhikari, Bevan Buirchell, MarkSweetingham and Geoff Thomas, Department of Agriculture 11. Improving lupin grain quality and yield through genetic manipulation of key physiological traits, Jon Clements1 and Bevan Buirchell2,1CLIMA, The University of Western Australia 2Department of Agriculture 12. Lupin alkaloids in four Australian species, Shao Fang Wang, Chemistry Centre (WA), CLIMA, The University of Western Australia 13. Improving lupin tolerance to herbicides of metribuzin, isoxaflutole and carfentrazone-ethyl, Ping Si1, Mark Sweetingham12, Bevan Buirchell12, David Bowran2 and Huaan Yang12 , 1CLIMA, The University of Western Australia, 2Department of Agriculture 14. Combined cultural and shielded sprayer herbicide application for weed management, Martin Harries and Mike Baker Department of Agriculture 15. Field testing of lupin seed of various sources with and without post maturity, pre harvest rain for field establishment, Martin Harries, Wayne Parker, Mike Baker, Department of Agriculture 16. Lupin seed rate by wide row spacing, Martin Harries, Bob French, Damien Owen D’arcy, Department of Agriculture 17. How environment influences row spacing response in lupins, Bob French, Department of Agriculture 18. The effect of wider row spacing on lupin architecture, growth and nutrient uptake dynamics, Bill Bowden and Craig Scanlan, Department of Agriculture 19. Fertiliser placement and application rate in wide rows, Martin Harries, Damien Owen D’arcy, Department of Agriculture 20. The pros and cons of cowing lupins in ‘wide’ rows, Wayne Parker, Bob French and Martin Harries, Department of Agriculture 21. Investigation into the influence of row orientation in lupin crops, Jeff Russell1 and Angie Roe2, 1Department of Agriculture, 2Farm Focus Consultants 22. Making the most of Mandelup, Greg Shea and Chris Matthews, Department of Agriculture 23. The effect of wild radish density and lupin cultivars on their competition at Merredin, Shahab Pathan, Abul Hashem and Bob French, Department of Agriculture 24. The potential of pearl lupin (Lupinus mutabilis) for southern Australia, Jon Clements1, Mark Sweetingham2, Bevan Buirchell2, Sofia Sipsas2, Geoff Thomas2, John Quealy1, Roger Jones2, Clive Francis1, Colin Smith2 and Gordon Francis1, 1CLIMA, University of Western Australia 2Department of Agriculture 25. Field pea, Mark Seymour, Department of Agriculture 26. Breeding highlights, Tanveer. Khan and Bob French, Department of Agriculture 27. Variety evaluation, Tanveer Khan, Kerry Regan, Jenny Garlinge and Rod Hunter, Department of Agriculture 28. Large scale field pea variety trials, Martin Harries, Department of Agriculture 29. Kaspa demonstrations, Rodger Beermier, Mark Seymour, Ian Pritchard, Graham Mussell, Department of Agriculture 30. Field pea harvesting demonstration at Merredin, Glen Riethmuller, Greg Shea and Bob French, Department of Agriculture 31. Does Kaspa respond differently to disease, fungicides, time of sowing or seed rate, Mark Seymour, Department of Agriculture 32. Field pea response to foliar Manganese in mallee district, Mark Seymour, Department of Agriculture 33. Kaspa harvesting observations 2004, Mark Seymour, Ian Pritchard, Glen Riethmuller, Department of Agriculture 34. ‘Blackspot Manager’ for understanding blackspot of peas and ascochyta blight management, Moin Salam and Jean Galloway, Department of Agriculture 35. 250,000 ha of field pea in WA – Is it sustainable? Larn McMurray1 and Mark Seymour2, 1South Australian Research and Development Institute, 2Department of Agriculture 36. Desi chickpea, Wayne Parker, Department of Agriculture 37. Breeding highlights, Tanveer Khan1,2 and Kadambot Siddique2,1Department of Agriculture, 2CLIMA, The University of Western Australia 38. Variety evaluation, Tanveer Khan, Kerry Regan, Jenny Garlinge and Rod Hunter, Department of Agriculture 39. Large scale variety testing of desi chickpeas, Martin Harries, Greg Shea, Mike Baker, Dirranie Kirby, Department of Agriculture 40. Desi variety chickpea trial, Martin Harries and Murray Blyth, Department of Agriculture 41. Seeding rates and row spacing of chickpea desi, Martin Harries, MurrayBlyth, Damien Owen D’arcy, Department of Agriculture 42. Molecular characterisation of chickpea wild relatives, Fucheng Shan, Heather Clarke and Kadambot Siddique, CLIMA, The University of Western Australia 43. Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea, Madeleine Wouterlood, Hans Lambers and Erik Veneklaas, The University of Western Australia 44. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 45. ‘Kimberly Large’ A high quality and high yielding new variety for the Ord River Irrigation Area, Kerry Regan1,2, Kadambot Siddique2, Peter White1,2, Peter Smith1 and Gae Plunkett1,1Department of Agriculture, 2CLIMA, University of Western Australia 46. Development of ascochyta resistant and high quality varieties for Australia, Kadambot Siddique1, Kerry Regan1,2, Tim Pope1 and Mike Baker2, 1CLIMA, The University of Western Australia 2Department of Agriculture 47. Towards double haploids in chickpeas and field pea, Janine Croser, Julia Wilson and Kadambot Siddique, CLIMA, The University of Western Australia 48. Crossing chickpea with wild Cicer relatives to introduce resistance to disease and tolerance to environmental stress, Heather Clarke and Kadambot Siddique, CLIMA, The University of Western Australia 49. Faba bean, Peter White, Department of Agriculture 50. Germplasm evaluation, Peter White1,2, Kerry Regan1,2, Tim Pope2, Martin Harries1, Mark Seymour1, Rodger Beermier1 and Leanne Young1, 1Department of Agriculture, 2CLIMA, The University of Western Australia 51. Lentil, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 52. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Martin Harries1, Murray Blyth1 and Michael Materne3, 1Department of Agriculture, 2CLIMA, University of Western Australia, 3Department of Primary Industries, Victoria 53. Lathyrus species, Kadambot Siddique1, Kerry Regan2, and Colin Hanbury2, 1CLIMA, the University of Western Australia, 2Department of Agricultur
    • 

    corecore